JDA Global LLC (EST. 2011) serves as the world’s largest & most experienced after-market diaphragm pump products provider. We leverage our deeply embedded industry knowledge each day to bring our worldwide distributor and customer network a low cost, high quality product, with rapid delivery & “easy to do business with” customer service.

EXPERIENCE

90 YEARS OF EXPERIENCE
WITH DIAPHRAGM PUMPS AT
OWNERSHIP LEVEL

100% ORDER FULFILLMENT

LARGEST WORLDWIDE
INVENTORY OF AFTER-MARKET
DIAPHRAGM PUMP PARTS

LOW COST PROVIDER

PRICE POINT GOAL: 15% BELOW
OEM DISTRIBUTOR NET PRICE

WE OWN THE TOOLS/MOLDS

20,000 SQ. FT. WAREHOUSE (REDLANDS, CA)
AFTER-MARKET DIAPHRAGM PUMP PARTS

THE NOMAD BRAND

Features thousands of after-market parts in stock at our California USA Facility. NOMAD parts are produced in collaboration with the world’s finest suppliers of AODDP Products. From investment casting to injection molding, JDA Global’s supply chain network is second-to-none in providing high quality rubber, metal & plastic parts.
LOW COST, HIGH QUALITY
AIR DIAPHRAGM PUMPS

6 SIZES: 1/2”, 1”, 1.5”, 2”, 3” & 4”

ALUMINUM, DUCTILE & 316 S.S. MODELS

CLAMP BAND CONSTRUCTION

ALL MAJOR ELASTOMER OPTIONS

SIMPLE, PROVEN DESIGN

ASSEMBLED AND TESTED IN USA

FASTEST DELIVERY IN THE INDUSTRY

316 S.S.

*Also available in Ductile Iron
NTG15 1/2”

Air Inlet ... 6 mm (1/4”)
Inlet...13 mm (1/2”)
Outlet .. 13 mm (1/2”)
Suction Lift ...1.22 m Dry (4’)
9.14 m Wet (30’)
Max. Flow Rate 54.9 lpm (14.5 gpm)
Max. Size Solids 1.6 mm (1/16”)
Height ... 224 mm (8.8”)
Width .. 208 mm (8.2”)
Depth ...178 mm (7.0”)
est. Ship Weight Aluminum 6 kg (13 lbs)
316 S.S. 9 kg (20 lbs)

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump performance curve.

Example: To pump 22.7 lpm (6.0 gpm) against a discharge pressure head of 2.7 bar (40 psig) requires 4 bar (60 psig) and 10.2 Nm³/h (6 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

NTG25 1”

Air Inlet ... 6 mm (1/4”)
Inlet...25 mm (1”)
Outlet .. 19 mm (3/4”)
Suction Lift ...5.18 m Dry (17’)
9.45 m Wet (31’)
Max. Flow Rate 132 lpm (35 gpm)
Max. Size Solids 3.2 mm (1/8”)
Height ... 279 mm (11.0”)
Width .. 267 mm (10.5”)
Depth ...185 mm (7.3”)
est. Ship Weight Aluminum 12 kg (26 lbs)
316 S.S. 11.24 kg (25 lbs)

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump performance curve.

Example: To pump 68.1 lpm (18.0 gpm) against a discharge pressure head of 2.7 bar (40 psig) requires 4.1 bar (60 psig) and 18.7 Nm³/h (11 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

Teflon Diaphragms: reduce flow by 25%
NTG40 1.5”

Air Inlet ... 13 mm (1/2”)
Inlet .. 38 mm (1-1/2”)
Outlet .. 32 mm (1-1/4”)
Suction Lift 5.49 m Dry (18’)
Max. Flow Rate 288 lpm (76 gpm)
Max. Size Solids 4.8 mm (3/16”)
Height .. 442 mm (17.4”)
Width ... 391 mm (15.4”)
Depth .. 285 mm (11.2”)
Est. Ship Weight Aluminum 17 kg (38 lbs)
 316 S.S. 26 kg (57 lbs)

NTG50 2”

Air Inlet ... 19 mm (3/4”)
Inlet .. 51 mm (2”)
Outlet .. 51 mm (2”)
Suction Lift 6.4 m Dry (21’)
Max. Flow Rate 617 lpm (163 gpm)
Max. Size Solids 6.4 mm (1/4”)
Height .. 668 mm (26.3”)
Width ... 404 mm (15.9”)
Depth .. 343 mm (13.5”)
Est. Ship Weight Aluminum 33 kg (72 lbs)
 316 S.S. 58 kg (127 lbs)
 Ductile 53 kg (115 lbs)

PERFORMANCE DATA

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump performance curve.

Example: To pump 113.6 lpm (30 gpm) against a discharge pressure head of 2.7 bar (40 psig) requires 4.1 (60 psig) and 25.5 Nm³/h (15 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

H₂O flow rates listed

For best performance, run pump at “center of curve” protocol

Example: To pump 318 lpm (84 gpm) against a discharge pressure head of 2.1 bar (30 psig) requires 4.1 bar (60 psig) and 85 Nm³/h (50 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

Teflon Diaphragms: reduce flow by 25%
NTG80 3”

- **Air Inlet**: 19 mm (3/4")
- **Inlet**: 76 mm (3")
- **Outlet**: 76 mm (3")
- **Suction Lift**: 5.5 m Dry (18’)
- **Max. Flow Rate**: 878 lpm (232 gpm)
- **Height**: 810 mm (31.9")
- **Width**: 432 mm (17.0")
- **Depth**: 279 mm (11.0")
- **Est. Ship Weight**: Aluminum 53 kg (116 lbs)
 - Ductile 92 kg (200 lbs)
 - 316 S.S 86 kg (190 lbs)
- **Max. Size Solids**: 35 mm (1-3/8")
- **Displacement/Stroke**: 3.66 m Dry (12’)
- **Inlet**: 102 mm (4")
- **Outlet**: 102 mm (4")
- **Height**: 826 mm (32.5")
- **Depth**: 330 mm (13.0")
- **Est. Ship Weight**: Ductile 231 kg (500 lbs)
- **Air Inlet**: 19 mm (3/4")
- **Inlet**: 102 mm (4")
- **Outlet**: 102 mm (4")
- **Suction Lift**: 3.66 m Dry (12’)
- **Displacement/Stroke**: 4.62 l (1.22 gal.)
- **Max. Flow Rate**: 1041 lpm (275 gpm)
- **Max. Size Solids**: 35 mm (1-3/8")

NT100 4”

- **Height**: 940 mm (37.0")
- **Width**: 940 mm (37.0")
- **Depth**: 330 mm (13.0")
- **Est. Ship Weight**: Ductile 231 kg (500 lbs)
- **Air Inlet**: 19 mm (3/4")
- **Inlet**: 102 mm (4")
- **Outlet**: 102 mm (4")
- **Suction Lift**: 9.14 m Wet (30’)
- **Displacement/Stroke**: 4.62 l (1.22 gal.)
- **Max. Flow Rate**: 1041 lpm (275 gpm)
- **Max. Size Solids**: 35 mm (1-3/8")

H₂O flow rates listed

For best performance, run pump at “center of curve” protocol

Example: To pump 530 lpm (140 gpm) against a discharge pressure head of 2.1 bar (30 psig) requires 4.1 bar (60 psig) and 136 Nm³/h (80 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

Teflon Diaphragms: reduce flow by 25%

H₂O flow rates listed

For best performance, run pump at “center of curve” protocol

Example: To pump 170 GPM against a discharge pressure of 60 PSIG requires 40 PSIG and 110 SCFM air consumption. (See dot on curve)

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.
LOW COST, HIGH QUALITY AIR DIAPHRAGM PUMPS

- 6 SIZES: 1/4”, 1/2”, 1”, 1.5”, 2” & 3”
- ASYMMETRICAL SPOOL DESIGN
- RELIABLE & EFFICIENT
- CLAMPED & BOLTED
- METALLIC & NON-METALLIC

ALUMINUM, DUCTILE & STAINLESS STEEL

POLYPROPYLENE
NOMAD PERFORMANCE DATA

NPF07

1/4”

Air Inlet................................. 3.2mm (1/8”)
Inlet.. 6.4mm (1/4”)
Outlet..................................... 6.4mm (1/4”)
Suction Lift............................. 3.3m Dry (10’8”)
Height.................................. 148 mm (5.8”)
Width.................................. 165.1 mm (6.5”)
Depth.................................. 114.3 mm (4.5”)
Est. Ship Weight.................. Aluminum 1.8 kg (4 lbs)
316 S.S. 4.0 kg (8.9 lbs)

Displacement/Stroke........... 0.02 l (0.005 gal)
Max. Flow Rate.................. 18.91 lpm (5 gpm)
Max. Size Solids............... .4 mm (1/64”)
Max. Flow Rate.................. 56.0 lpm (14.8 gpm)
Max. Size Solids............... 3.2 mm (1/8”)

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily
operation parameters will fall in the center of the pump performance curve.

Example: To pump 7.6 lpm (2 gpm) against a discharge pressure head
of 2.8 bar (40 psig) requires 4.1 bar (61 psig) and 1.2 Nm³/h (.7 scfm) air
consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

NPF15

1/2”

Air Inlet................................. 6mm (1/4”)
Inlet.. 13mm (1/2”)
Outlet..................................... 13mm (1/2”)
Suction Lift............................ 5.2 m Dry (17’0”)
Height.................................. 277 mm (10.9”)
Width.................................. 234 mm (9.2”)
Depth.................................. 201 mm (7.9”)
Est. Ship Weight............... Aluminum 6 kg (13 lbs)
316 S.S. 9 kg (20 lbs)

Displacement/Stroke........... 0.101 l (0.027 gal)
Max. Flow Rate.................. 56.0 lpm (14.8 gpm)
Max. Size Solids............... 1.6 mm (1/16”)
Max. Flow Rate.................. 170 lpm (45 gpm)
Max. Size Solids............... 3.2 mm (1/8”)

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily
operation parameters will fall in the center of the pump performance curve.

Example: To pump 32.9 lpm (8.7 gpm) against a discharge pressure head
of 4.1 bar (60 psig) requires 5.5 bar (80 psig) and 27.2 Nm³/h (16 scfm) air
consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.
NOMAD Performance Data

NPF25 1”

Air Inlet: 6 mm (1/4”)
Inlet: 25 mm (1”)
Outlet: 19 mm (3/4”)
Suction Lift: 5.79 m Dry (19’)
Height: 8.5 m Wet (28’)
Displacement/Stroke: 0.34 l (0.091 gal)
Max. Flow Rate: 170 lpm (45 gpm)
Max. Size Solids: 3.2 mm (1/8”)
Height: 279 mm (11.0”)
Width: 267 mm (10.5”)
Depth: 201 mm (7.9”)
Est. Ship Weight: Aluminum 12 kg (26 lbs)
Stainless Steel 16 kg (36 lbs)

NPF40 1.5”

Air Inlet: 19 mm (3/4”)
Inlet: 38 mm (1-1/2”)
Outlet: 32 mm (1-1/4”)
Suction Lift: 5.8 m Dry (19’)
Height: 8.0 m Wet (26’)
Displacement/Stroke: 0.98 l (0.26 gal)
Max. Flow Rate: 288 lpm (76 gpm)
Max. Size Solids: 4.8 mm (3/16”)
Height: 429 mm (16.9”)
Width: 368 mm (14.5”)
Depth: 307 mm (12.1”)
Est. Ship Weight: Aluminum 13 kg (29 lbs)
Stainless Steel 20 kg (45 lbs)

Flow rates indicated on chart were determined by pumping water.

For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump performance curve.

1Displacement per stoke was calculated at 70 psig (4.8 bar) air inlet pressure

Example: To pump 76 lpm (20 gpm) against a discharge pressure head of 2.7 bar (40 psig) requires 4.1 bar (60 psig) and 22 Nm³/h (13 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.
NOMAD

PERFORMANCE DATA

NPF50

2"

Air Inlet.. 13 mm (1/2"
Inlet... 51 mm (2"
Outlet... 51 mm (2"
Suction Lift................................. 6.9 m Dry (22.7"
6.6 m Wet (28.4"
Displacement/Stroke..................... 2.61 l (0.70 gal)
Max. Flow Rate.................. 623 lpm (164.7 gpm)
Max. Size Solids............................... 6.4 mm (1/4"
Height....................................... 668 mm (26.3"
Width....................................... 404 mm (15.9"
Depth....................................... 343 mm (13.5"
Est. Ship Weight........... Aluminum 32 kg (70 lbs)
316 Stainless Steel 51 kg (112 lbs)
Ductile 47 kg (104 lbs)

NPF80

3"

Air Inlet.. 19 mm (3/4"
Inlet... 76 mm (3"
Outlet... 76 mm (3"
Suction Lift................................. 6.6 m Dry (21.6"
9.3 m Wet (30.6"
Displacement/Stroke..................... 5.53 l (1.46 gal)
Max. Flow Rate.................. 909 lpm (240 gpm)
Max. Size Solids............................... 9.5 mm (3/8"
Height....................................... 823 mm (32.4"
Width....................................... 505 mm (19.9"
Depth....................................... 406 mm (16.0"
Est. Ship Weight........... Aluminum 55 kg (121 lbs)
316 Stainless Steel 85 kg (187 lbs)
Ductile 93 kg (205 lbs)
NOMAD
PERFORMANCE DATA

NPF07
1/4"

Air Inlet.. 3 mm (1/8")
Inlet.. 6 mm (1/4")
Outlet.. 6 mm (1/4")
Suction Lift................................. 1.9 m Dry (6.2')
 9.3 m Wet (30.6')
Displacement/Stroke.............. 0.04 l (0.01 gal)1
Max. Flow Rate......................... 16.7 lpm (4.4 gpm)
Max. Size Solids......................... 0.7 mm (1/32")
Height.. 173 mm (6.8")
Width... 173 mm (6.8")
Depth... 127 mm (5.0")
Est. Ship Weight............... Polypropylene 2 kg (4 lbs)

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily
operation parameters will fall in the center of the pump performance curve.

1Displacement per stroke was calculated at 70 psig (4.8 bar) air inlet pressure
against a 30 psig (2 bar) head pressure

Example: To pump 2.3 lpm (0.6 gpm) against a discharge pressure head
of 6.2 bar (90 psig) requires 6.9 bar (100 psig) and 3.4 Nm³/h (2 scfm) air
consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

NPF15
1/2"

Air Inlet.. 6 mm (1/4")
Inlet.. 13 mm (1/2")
Outlet.. 13 mm (1/2")
Suction Lift................................. 5.2 m Dry (17.0')
 8.7 m Wet (28.4')
Displacement/Stroke.............. 0.101 l (0.027 gal)1
Max. Flow Rate......................... 56.0 lpm (14.8 gpm)
Max. Size Solids......................... 1.6 mm (1/16")
Height.. 277 mm (10.9")
Width... 234 mm (9.2")
Depth... 201 mm (7.9")
Est. Ship Weight............... Polypropylene 4 kg (8 lbs)

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily
operation parameters will fall in the center of the pump performance curve.

1Displacement per stroke was calculated at 70 psig (4.8 bar) air inlet pressure
against a 30 psig (2 bar) head pressure

Example: To pump 32.9 lpm (8.7 gpm) against a discharge pressure head
of 4.1 bar (60 psig) requires 5.5 bar (80 psig) and 27.2 Nm³/h (16 scfm) air
consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.
NPF25

1"

- **Air Inlet**: 13 mm (1/2"
- **Inlet**: 25 mm (1"
- **Outlet**: 25 mm (1"
- **Suction Lift**: 3.6 m Dry (11.9"
- **Disp. per Stroke**: 0.32 L (0.086 gal)
- **Max. Flow Rate**: 220 lpm (58 gpm)
- **Max. Size Solids**: 4.76 mm (3/16"

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump's performance curve.

Example: To pump 68 (18 gpm) against a discharge head pressure of 3.4 bar (50 psig) requires 4.1 bar (60 psig) and 34 Nm³/h (20 scfm) air consumption. (See dot on chart.)

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

NPF40

1.5"

- **Air Inlet**: 13 mm (1/2"
- **Inlet**: 38 mm (1-1/2"
- **Outlet**: 38 mm (1-1/2"
- **Suction Lift**: 5.5 m Dry (18.2"
- **Disp. per Stroke**: 0.32 L (0.086 gal)
- **Max. Flow Rate**: 220 lpm (58 gpm)
- **Max. Size Solids**: 4.76 mm (3/16"

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump's performance curve.

Example: To pump 227 lpm (60 gpm) against a discharge pressure head of 5.0 bar (70 psig) requires 6.9 bar (100 psig) and 136 Nm³/h (80 scfm) air consumption. (See dot on chart.)

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.
NOMAD PERFORMANCE DATA

NPF50 2”

- **Air Inlet:** 13 mm (1/2”)
- **Inlet:** 51 mm (2”)
- **Outlet:** 51 mm (2”)
- **Suction Lift:** 6.23 m Dry (20.4’)
- **Displacement/Stroke:** 2.75 l (0.727 gal)
- **Max. Flow Rate:** 624 lpm (165 gpm)
- **Max. Size Solids:** 6.4 mm (1/4”)
- **Height:** 805 mm (31.7”)
- **Width:** 605 mm (23.8”)
- **Depth:** 353 mm (13.9”)
- **Est. Ship Weight:** Polypropylene 32 kg (70 lbs)

Flow rates indicated on chart were determined by pumping water.

For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump performance curve.

Example:
- To pump 246 lpm (65 gpm) against a discharge pressure head of 2.8 bar (40 psig) requires 4.1 bar (60 psig) and 80 Nm3/h (50 scfm) air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

NPF80 3”

- **Air Inlet:** 12.7 mm (1/2”)
- **Inlet:** 76.2 mm (3”)
- **Outlet:** 76.2 mm (3”)
- **Suction Lift:** 6.09 m Dry (20’)
- **Displacement/Stroke:** 2.75 l (0.727 gal)
- **Max. Flow Rate:** 900 lpm (238 gpm)
- **Max. Size Solids:** 10 mm (3/8”)
- **Height:** 923 mm (27.44”)
- **Width:** 670 mm (15.9”)
- **Depth:** 438 mm (13.1”)
- **Est. Ship Weight:** Polypropylene 67 kg (148 lbs)

Flow rates indicated on chart were determined by pumping water.

For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump performance curve.

Example:
- To pump 168 gpm against a discharge pressure head of 20 psig requires 80 psig and 112 scfm air consumption. (See dot on chart).

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.
SPECIALTY PRODUCTS

MULTIPLE VARIATIONS AVAILABLE FOR THE LARGEST OEM’S IN THE INDUSTRY

EASY-TO-DISASSEMBLE FOR FIRE RESISTANT, ANTI-STATIC MINING

ELASTOMER KITS

ELECTRO-POLISHED PUMPS FOR S.S. PUMPS IN SANITARY APPS. TRI-CLAMP NON-THREADED CONNECTIONS

NON-METALLIC PUMPS (CLAMPED) EASY-TO-DISASSEMBLE FOR FIRE RESISTANT, ANTI-STATIC MINING

GARLOCK® ONE-UP® ONE PIECE COMPOSITE DESIGN WITH A PROPRIETARY 100% PTFE WETTED SIDE. AVAILABLE FOR ALL MAJOR MANUFACTURERS

GARLOCK® ONE-UP®
FLAP VALVE PUMP
MOVES LARGE SOLIDS IN MINING AND CONSTRUCTION APPLICATIONS

SCREEN BASE PUMP
“FAMILY” OF ALUMINUM MODELS IDEAL FOR RUGGED OUTDOOR USE
GLOBAL DISTRIBUTOR NETWORK
BRAND NAME END USERS

24 HR. SERVICE
“EASY TO DO BUSINESS WITH” (ETDBW)

OVER 5000 SKU’S IN STOCK
OUR MOTTO:
250 NEW PARTS EVERY 6 MONTHS

WHY SELECT AIR OPERATED DOUBLE DIAPHRAGM PUMPS
NOMAD pumps are self-priming, can handle viscous and abrasive products and can run dry without damage. NOMAD pumps do not employ costly motors, variable speed drives, by-pass plumbing or mechanical seals. Please see the matrix below for a comparison of the NOMAD air operated Diaphragm pumps versus Rotary and Centrifugal pumps:

Note: In the event of a power be closed, if the restarting of the pump is not desirable once power is regained.

SUGGESTED INSTALLATION
WHY SELECT AIR OPERATED DOUBLE DIAPHRAGM PUMPS

NOMAD pumps are self-priming, can handle viscous and abrasive products and can run dry without damage.

NOMAD pumps do not employ costly motors, variable speed drives, by-pass plumbing or mechanical seals.

Please see the matrix below for a comparison of the NOMAD air operated Diaphragm pumps versus Rotary and Centrifugal pumps:

<table>
<thead>
<tr>
<th></th>
<th>SOLIDS PASSAGE</th>
<th>SHEAR SENSITIVITY</th>
<th>ABRASIVES HANDLING</th>
<th>SOLVENT HANDLING</th>
<th>DRY PRIMING</th>
<th>VISCOUS FLUIDS HANDLING</th>
<th>MAINTENANCE COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMAD Diaphragm Pumps</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Vane Pumps</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Internal Gear Pumps</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
<td>★</td>
</tr>
<tr>
<td>External Gear Pumps</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★</td>
</tr>
<tr>
<td>Lobe Pumps</td>
<td>★★★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★★★</td>
<td>★</td>
</tr>
<tr>
<td>Centrifugal Pumps</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Progressive Cavity Pumps</td>
<td>★</td>
<td>★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Piston/Plunger Pumps</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★★</td>
</tr>
</tbody>
</table>

★★★★ - Excellent, ★★★ - Good, ★★★ - Average, ★ - Poor

SUGGESTED INSTALLATION

Note: In the event of a power failure, the shutoff valve should be closed, if the restarting of the pump is not desirable once power is regained.